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ON SUBSPACE BALANCED CONVEX-CYCLIC OPERATORS
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Abstract. Let X be a separable Banach space and M be a subspace of X.
A bounded Linear operator T on X is subspace balanced convex-cyclic for a subspace M ,
if there exists a vector x∈X such that the intersection of balanced convex hull of orb(T ,x)
with M is dense in M . We give an example of subspace balanced convex-cyclic operator that
is not balanced convex-cyclic. Also we give an improvement of the Kitai-like criterion for
subspace balanced convex-cyclicity and bring on with the Hahn-Banach characterization for
subspace balanced convex-cyclicity.
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1. Introduction

Dynamics of linear operators are mainly with the behaviour of them.The study of subspace
hypercyclic operators was started by Mador and Martinez in [6].
Convex-cyclic operators was introduced by Rezaei in [7].The study of subspace convex-cyclic
operators was started in [1].Baseri, Kashkooly and Rezaei start balanced convex-cyclic oper-
ators in [3].
A bounded linear operator T on Banach space X is balanced convex-cyclic (see [3]) if there
exists a vector x∈X such that the balanced convex hull of orb(T ,x) is dense in X. The vector
x is said to be balanced convex-cyclic vector for T .
In [3] it is mentioned that between a set and its linear span there is a balanced convex hull,
from this we get that every hypercyclic operator is balanced convex−cyclic and every bal-
anced convex-cyclic operator is cyclic. In this paper we introduce and study the subspace
balanced convex-cyclic operators.

2. Basic definitions and theorems

Let H be a real or complex separable Hilbert space.let M be a subspace of H that is closed
and B(H) be the algebra of all linear continuous operators on H.

Definition 2.1. The set of all balanced convex polynomials is define as BCP = {P (z) =
n∑

j=0
ajz

j :
n∑

j=0
|aj | ≤ 1}.
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Definition 2.2. Let T∈B(H) and let M be a non-zero subspace of H. T is said to be
subspace balanced convex-cyclic operator, if there exists x ∈ H such that BC − orb(T, x)∩M
is dense in M , where;

BC − orb(T, x) = {P (T )x : P is balanced convex polynomial}
={P (T )x : P (T ) = a0 + a1T + a2T

2...+ anT
n, n ∈ N,

n∑
j=0

|aj | ≤ 1}

Such a vector x is said to be a subspace balanced convex−cyclic vector.
we will use M−balanced convex−cyclic instead of subspace balanced convex−cyclic.
we define BC(T,M) := {x ∈ H : BC−orb(T, x)∩M is dense in M} as the set of all subspace
balanced convex−cyclic vectors for M .

Proposition 2.3. Let T : X −→ X and S : Y −→ Y be bounded operators, If S⊕T is
hypercyclic then so are S and T.

Proof. See [5] □
Proposition 2.4. Let X be a Banach space and T ∈ B(X) be a balanced convex−cyclic
operator, then
1. ∥T∥ > 1.
2. sup{∥Tn∥ : n ≥ 1} = +∞.
3. sup{∥T ∗nΛ∥ : n ∈N} = +∞, for every Λ≠0 in X∗.
4. every component of σ(T ) must intersect the set C⧹D.
5. If X is an infinite−dimensional complex Banach space, then T is not compact.

Proof. See [3] □
Example 2.5. Let T be a balanced convex−cyclic operator on H and I be the identity
operator on H. Then T ⊕ I : H⊕H −→ H⊕H is subspace balanced convex−cyclic operator
for subspace M=H⊕{0} with subspace balanced convex−cyclic vector x⊕0, moreover T⊕I
is not balanced convex−cyclic operator.

Proof. Since T is balanced convex−cyclic operator on H, so there exists x∈H such that
BC − orb(T, x) is dense in H. let M=H⊕{0}⊆H and m=x⊕0 thus,
BC − orb(T ⊕ I,m)={P (T ⊕ I)m : P is a balanced convex polynomial}={P (T )x⊕ 0 : P is
a balanced convex polynomial}⊆H⊕{0}=M .
Since BC − orb(T, x) is dense in H, so BC − orb(T ⊕ I,m)∩M is dense in M .Therefore T⊕I
is a subspace balanced convex−cyclic operator.
Assume that T⊕I is a subspace balanced convex−cyclic on H⊕H, then by proposition 2.3,
the identity operator must be balanced convex−cyclic on {0}, which is impossible.
Because ∥I∥=1 and by proposition 2.4 we get a contradiction. □

We will define subspace balanced convex−transitive operators and we will show that they
will be subspace balanced convex−cyclic operators.
We will use the idea from [4,5,6] changing them for balanced convex polynomial spans and
generalizing them.

Definition 2.6. Let T ∈ B(H) and M be a non−zero subspace of H.T is said to be
M−balanced convex−transitive with respect to M if for all non−empty sets U, V ⊆ M both
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are relatively open, there exists a balanced convex−polynomial P such that P (T )(U) ∩ V ̸=ø
or U ∩ P (T )−1(V )̸=øcontains a relatively open non−empty subset of M .

Proposition 2.7. Let T ∈ B(H) and M ba a non−zero subspace of H.

Then BC(T,M)=
∞∩
j=1

∪
P∈BCP

P (T )−1(Vj) where BCP is the collection of all balanced convex

polynomials and {Vj} countable open basis for relative topology of M as a subspace of H.

Proof. If x ∈
∞∩
j=1

∪
P∈BCP

P (T )−1(Vj) then for all j=1,2,... there exists a balanced convex

polynomial P such that x ∈ P (T )−1(Vj) if and only if P (T )x ∈ Vj .
But since {Vj} is a basis for the relatively topology of M , this occurs if and only if BC −
orb(T,M) ∩M is dense in M , that is x ∈ BC(T,M). □

Lemma 2.8. Let T ∈ B(H) and M be a non−zero subspace of H.Then the following are
equivalent:

(1) T is M−balanced convex−transitive with respect to M .

(2) For each relatively open subsets U and V of M , there exists P ∈ BCP such that
P (T )−1(U)∩V is relatively open subset in M .

(3) For each relatively open subsets U and V of M , there exists P ∈ BCP such that
P (T )−1(U)∩V ̸=ø and P (T )(M)⊆M .

Proof. (3)=⇒(2) Since P (T ) : M −→ M is continuous and V is relatively open in M ,
then P (T )−1(U) is also relatively open in M . Now, if V be any open subset of M , then
P (T )−1(U)∩V is open and P (T )−1(U)∩V⊆M .

(2)=⇒(1) Since for each relatively open subsets U and V , P (T )−1(U)∩V is relatively open
subset in M , so P (T )−1(U)∩V ̸=ø and P (T )−1(U)∩V is open in M .

(1)=⇒(3) By definition of M−balanced convex−transitive, there exists U and V relatively
open subsets in M , such that W = P (T )−1(U)∩V ̸=ø and W is relatively open in M , and
W⊆P (T )−1(U). So P (T )(W ) ⊆ U and U ⊆ M , therefore we have P (T )(W ) ⊆ M .
We must show that P (T )(M) ⊆ M .
Let x ∈ M and x0 ∈ W , since W is relatively open in M , so there exists r > 0 such that
x0 + rx ∈ W .
Since P (T )(W ) ⊆ M , so P (T )(x0 + rx) = P (T )(x0) + rP (T )x ∈ M .
Thus P (T )(x0) ∈ M and since M is subspace so r−1(−P (T )(x0) + P (T )(x0) + rP (T )x) ∈ M ,
that is P (T )(x) ∈ M .This is true for any x ∈ M , hence for P (T )(x) ∈ M , so P (T )(M) ⊆ M .

□

Theorem 2.9. Let T ∈ B(H) and M be a non−zero subspace of H.If T is M−balanced
convex−transitive,then T is M−balanced convex−cyclic.

Proof. By proposition 2.7 and lemma 2.8 proof is clear. □
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3. Subspace balanced convex−cyclic Criterion

In this section similar to [3] we give easily applicable Kitai-like criterion for an operator to
be subspace balanced convex−cyclic. Also we will relate it with invariant subspaces and we
will see that the converse of theorem 2.9 in general is not true.
Proposition 3.1. Let T ∈ B(H) and let M be a non−zero subspace of H.If there exist X
and Y , dense subsets of M such that for every x ∈ X and y ∈ Y there exists a sequence
{Pk}∞k=1 of balanced convex polynomials such that;

(1) Pk(T )y−→0 ; ∀y ∈ Y .
(2) For each x ∈ X, there exists a sequence {y

k
}⊆ M, such that y

k
→0 and Pk(T )yk

→ x.
(3) M is an invariant subspace for Pk(T ) for all k ⩾1.

Then T is M−balanced convex−cyclic operator.
Proof. We will use lemma 2.8 and theorem 2.9.
Let U and V be non−empty relatively open subsets of M . We will show that there exists k ⩾1
such that Pk(T )(U)∩V ̸=ø.Since X,Y are dense in M , there exists v ∈ Y ∩ V and u ∈ X ∩U .
Since U and V are relatively open, there exists ε>0 such that the M−ball centered at v of
radius ε is contained in V and the M−ball centered at u of radius ε is contained in U .
By hypothesis, for u ∈ X and v ∈ Y , we can choose k large enough such that there exists y

k
∈

M with ∥Pk(T )v∥ < ε
2 , ∥yk∥ < ε and ∥Pk(T )yk

− u ∥< ε
2 .So we have;

a) Since v ∈ M and y
k
∈ M , so v + y

k
∈ M . Also since ∥(v + y

k
)-v∥=∥y

k
∥<ε it follows

that v + y
k

is in M−ball centered at v of radius ε and hence v + y
k
∈ V .

b) Since v and y
k

are in M and M is invariant under Pk(T ),it follows that Pk(T )(v + y
k
) ∈ M .

Also ∥Pk(T )(v + y
k
)− u∥⩽∥Pk(T )(v)∥+∥Pk(T )(yk

)− u∥<ε.
Hence Pk(T )(v+ y

k
) is in the M−ball centered at u of radius ε and thus Pk(T )(v+ y

k
)∈U .

So by (a) and (b), T is M−balanced convex−transitive and by theorem 2.9 we get that v+y
k
∈

Pk(T )
−1(U)∩V , thus Pk(T )

−1(U)∩V ̸=ø which means that T is M−balanced convex−cyclic
operator. □

4. Hahn−Banach characterization

A necessary and sufficient condition for an operator so as to have a balanced convex−cyclic
vector was established in [3].
Now in this section we give a similar necessary and sufficient condition for subspace balanced
convex−cyclic operators.Also we prove some properties about subspace balanced convex−cyclic
operators.

Theorem 4.1. (Hahn−Banach characterization for subspace balanced convex−cyclicity)
Let X be a separable infinite dimensional Banach space and M be a non−trivial closed
subspace of X and T ∈ B(X). Then for a vector x ∈ X the following conditions are equivalent:

(1) The vector x is an M−balanced convex−cyclic vector for T .
(2) For every non−zero functional f ∈ M∗ we have sup{|f(P (T )x)| : P is balanced convex

polynomial and P (T )x ∈ M}=+∞.

Proof. Let S=BC − orb(T, x)∩M . So S is a balanced convex set and the proof is similar to
proposition 2.2 in [3] and so we omit it. □
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Theorem 4.2. Let X be a separable infinite dimensional Banach space.
If T is M−balanced convex−cyclic operator, then;

(1) ∥T∥ > 1.
(2) sup{∥T ∗nf∥ : n∈N}=+∞ for each non−zero f ∈ M∗.

Proof. (1) If ∥T∥⩽1,then for each x ∈ X, BC − orb(T, x)∩M is norm bounded and can not
dense in M .So T is not M−balanced convex−cyclic which is a contradiction.

(2) By way of contradiction, suppose there exists a non−zero linear functional f ∈ M∗

such that ∥T ∗nf∥⩽b for some positive number b and all n⩾1.Let x ∈ X so
|f(Tnx)| = |(T ∗nf)x|⩽∥T ∗nf∥∥x∥⩽b∥x∥. Hence for every balanced convex polynomial P ,we
have |f(p(T ))x|⩽b∥x∥.So BC − orb(T, x)∩M can not dense in M and T is not M−balanced
convex−cyclic which is a contradiction.

□

Proposition 4.3. If T ∈ B(X) is an M−balanced convex−cyclic operator,then σp(T ∗) ∩ D=ø.

Proof. Let x be a subspace balanced convex−cyclic vector for T and λ be an eigenvalue for
T ∗.So there exists a non−zero bounded linear functional f on X such that T ∗◦f=λf .
Hence f(Tnx)=T ∗n(f(x))=λnf(x).So for every balanced convex polynomial P we have f(P (T )x)=P (λ)f(x)
and consequently supP∈ BCP |f(P (T )x)|=supP∈ BCP |P (λ)| ∥f∥=+∞ if and only if |λ|>1.This
completes the proof. □

As a result of theorem 4.1 we have the next corollary.

Corollary 4.4. If T ∈ B(X) is an M−balanced convex−cyclic operator,then T has dense
range.

The next theorem similar to theorem 2.6 in [2] shows that if an operator T ∈ B(X) be
balanced convex−cyclic, then there exists a special subspace M of X such that T is an
M−balanced convex−cyclic operator.

Theorem 4.5. Let x ∈ X be a balanced convex−cyclic vector for an operator T ∈ B(X),then
x is an M−balanced convex−cyclic vector for a non−trivial closed subspace M of X.
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